ES 203 2014: Quiz 1 solution

Instructions

i. Separate into groups of no more than three persons.
ii. Only one submission is needed for each group. Late submission will not be accepted.
iii. Write down all the steps that you have done to obtain your answers. You may not get full credit even when your answer is correct without showing how you get your answer.

Name	ID
Prapon	

iv. Do not panic.

1. Find I_{1} when $I_{S}=10 A, R_{1}=3 \mathrm{k} \Omega$ and $R_{2}=2 \mathrm{k} \Omega$. current divider formula

$$
I_{1}=\frac{\frac{1}{R_{1}}}{\frac{1}{R_{1}}+\frac{1}{R_{2}}} I_{5}=\frac{R_{2}}{R_{1}+R_{2}} I_{5}=\frac{2 k}{3 k+2 k} \times 10=\frac{2}{5} \times 10=4 \mathrm{~A}
$$

2. Consider the circuit below.

a. Find the equivalent resistance with respect to terminals abb

Writ. terminals $a-b$,
the 4Ω is a "hanging" branch.
b. Find the equivalent resistance with respect to

C
c (If we put a current source across terminals $b-c$, there wont be any current going up to "a" because there i) no where the current con go after that)
c. Find the equivalent resistance with respect to terminals ac
wot. terminals $a-c$,

So, 3Ω and 4Ω are actually
in series and

$$
R_{\text {eq }}=3+4=7 \Omega
$$

Quiz 1 Solution

$$
R_{a c} \approx 4 \mathrm{k} \Omega
$$

ES 203 2014: Quiz 2 Solution

Instructions

i. Separate into groups of no more than three persons. Make sure the group members are not exactly the same as any of your earlier groups.
ii. Only one submission is needed for each group. Late submission will not be accepted.
iii. Write down all the steps that you have done to obtain your answers. You may not get full credit even when your answer is correct without showing how you get your answer.

Name	ID
Prapun	555

For the circuit below, suppose $i_{s}=15 \mathrm{~A}$.
a. Find all mesh currents.
b. Find v_{0}

From mesh 2,

$$
-\left(i_{2}-i_{1}\right) \times 4-i_{2} \times 12-i_{2} \times 8=0
$$

$$
\begin{aligned}
4 i_{1} & =i_{2}(\underbrace{4+12+8}_{24}) \\
i_{2} & =\frac{4}{24}_{4}^{4} i_{1}=\frac{15}{6}=2.5 \mathrm{~A}
\end{aligned}
$$

(a) $\quad i_{1}=15 A$

$$
i_{2}=2.5 \mathrm{~A}
$$

(b) From Ohm's law, $v_{0}=+i_{2} \times 8=\frac{5}{2} \times 8=5 \times 4=20 \mathrm{~V}$
direction of i_{2} conforms with the passive sign convention when considered with the polarity of v_{0}.

