ECS 203 2014: Quiz 1 Solution

Instructions

- i. Separate into groups of no more than three persons.
- ii. Only one submission is needed for each group. Late submission will not be accepted.
- iii. Write down all the steps that you have done to obtain your answers. You may not get full credit even when your answer is correct without showing how you get your answer.

Prapon	Name	ID
	Prapon	

- iv. Do not panic.
- 1. Find I₁ when I_s = 10 A, R₁ = 3 k Ω and R₂ = 2 k Ω .

- $I_{1} = \frac{\frac{1}{R_{1}}}{\frac{1}{R_{1}} + \frac{1}{R_{2}}} I_{s} = \frac{R_{2}}{R_{1} + R_{2}} I_{s} = \frac{2k}{3k + 2k} \times 10 = \frac{2}{5} \times 10 = 4A$
- 2. Consider the circuit below.

ECS 203 2014: Quiz 2 Solution

Instructions

- i. Separate into groups of no more than three persons. Make sure the group members are not exactly the same as any of your earlier groups.
- ii. Only one submission is needed for each group. Late submission will not be accepted.
- iii. Write down all the steps that you have done to obtain your answers. You may not get full credit even when your answer is correct without showing how you get your answer.

Name	ID
Pragun	595
•	

For the circuit below, suppose $i_s = 15A$.

- a. Find all mesh currents.
- b. Find v_0

From mesh (2)

$$-(\dot{n}_{2}-\dot{n}_{1})\times4 - \dot{n}_{2}\times12 - \dot{n}_{2}\times8 = 0$$

$$4\dot{n}_{1} = \dot{n}_{2} \left(\underbrace{4+12+8}_{24} \right)$$

$$\dot{n}_{2} = \underbrace{4}_{24} \dot{n}_{1} = \underbrace{\frac{15}{5}}_{5} = 2.5 A$$

$$6 \qquad 2$$

(a)
$$i_1 = 15 A$$

 $i_2 = 2.5 A$

Lb) From Ohm's law,
$$V_0 = \pm i_2 \times 8 = \frac{5}{2} \times 8 = 5 \times 4 = 20 V$$

direction of i_2 conforms with the
passive sign convention when considered
with the polarity of V_0 .